Product Code Database
Example Keywords: battlefield -underclothes $70
   » » Wiki: Interchange Law
Tag Wiki 'Interchange Law'.
Tag

Interchange law
 (

In , specifically , the interchange law (or exchange law) regards the relationship between vertical and horizontal compositions of natural transformations.

Let \mathbf{F,\, G,\, H} : \mathbb{C} \longrightarrow \mathbb{D} and \mathbf{\bar{F},\, \bar{G},\, \bar{H}} : \mathbb{D} \longrightarrow \mathbb{E} where \mathbf{F,\, G,\, H,\, \bar{F},\, \bar{G},\, \bar{H}} are and \mathbb{C},\, \mathbb{D},\, \mathbb{E} are categories. Also, let \boldsymbol{\alpha} : \mathbf{F \longrightarrow G} and \boldsymbol{\beta} : \mathbf{G \longrightarrow H} while \boldsymbol\bar\alpha : \mathbf{\bar{F} \longrightarrow \bar{G}} and \boldsymbol\bar\beta : \mathbf{\bar{G} \longrightarrow \bar{H}} where \boldsymbol\alpha,\, \boldsymbol\beta,\, \boldsymbol\bar\alpha,\, \boldsymbol\bar\beta are natural transformations. For simplicity's and this article's sake, let \boldsymbol\bar\alpha and \boldsymbol\bar\beta be the "secondary" natural transformations and \boldsymbol\alpha and \boldsymbol\beta the "primary" natural transformations. Given the previously mentioned, we have the interchange law, which says that the horizontal composition (\circ) of the primary vertical composition (\bullet) and the secondary vertical composition (\bullet) is equal to the vertical composition (\bullet) of each secondary-after-primary horizontal composition (\circ); in short, (\bar{\boldsymbol{\beta}}\ \bullet\ \bar{\boldsymbol{\alpha}}) \circ\ ({\boldsymbol{\beta}}\ \bullet\ {\boldsymbol{\alpha}})\ = (\bar{\boldsymbol{\beta}}\ \circ\ {\boldsymbol{\beta}})\ \bullet\ (\bar{\boldsymbol{\alpha}}\ \circ\ {\boldsymbol{\alpha}}).

(1998). 9781441931238, Springer Science+Business Media New York.
It also appears in monoidal categories wherein classical composition (\circ) and the (\otimes) take their places in lieu of the horizontal composition and vertical composition partnership and is denoted (g \circ f) \otimes (j \circ h) = (g \otimes j) \circ (f \otimes h).

The word "interchange" stems from the observation that the compositions and natural transformations on one side are switched or "interchanged" in comparison to the other side. The entire relationship can be shown within the following diagram.

If we apply this context to functor categories, and observe natural transformations \boldsymbol{\alpha} : \mathbf{F \longrightarrow G} and \boldsymbol{\beta} : \mathbf{G \longrightarrow H} within a category V and \boldsymbol\bar\alpha : \mathbf{\bar{F} \longrightarrow \bar{G}} and \boldsymbol\bar\beta : \mathbf{\bar{G} \longrightarrow \bar{H}} within a category W, we can imagine a functor \Gamma : V \longrightarrow W, such that

the natural transformations are mapped like such:

  • \Gamma(\boldsymbol{\alpha}) \longrightarrow \boldsymbol{\bar{\alpha}},\,
  • \Gamma(\boldsymbol{\beta}) \longrightarrow \boldsymbol{\bar{\beta}},\,
  • and \Gamma(\boldsymbol\beta\ \bullet\ \boldsymbol\alpha) \longrightarrow (\boldsymbol\bar\beta\ \bullet\ \boldsymbol\bar\alpha);

functors are also mapped accordingly:

  • \Gamma(\boldsymbol{\mathbf{F}}) \longrightarrow (\boldsymbol{\mathbf{\bar{F}}}),\,

  • \Gamma(\boldsymbol{\mathbf{G}}) \longrightarrow (\boldsymbol{\mathbf{\bar{G}}}),\,
  • and \Gamma(\boldsymbol{\mathbf{H}}) \longrightarrow (\boldsymbol{\mathbf{\bar{H}}}).

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time